- characterization of 5-HT₃ receptors in three isolated preparations derived from guinea pig tissues. Br J Pharmacol 101: 591-598, 1990.
- Hornsby CD, Barnes NM, Barnes JM, Costall B and Naylor RJ, Pharmacological comparison of the rat and guinea-pig cortical 5-hydroxytryptaminergic uptake system. Br J Pharmacol 100 (Suppl): 396P, 1990.
- Bradford MM, A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein dye binding. *Anal Biochem* 72: 248-254, 1976.
- Hyttel J, Effect of a specific 5-HT uptake inhibitor, citalopram (Lu10-171), on [3H]5-HT uptake in rat brain synaptosomes in vitro. Psychopharmacology 60: 13-18, 1978.
- Ross SB and Renyi AL, Tricyclic antidepressant agents.
 comparison of the inhibition of uptake of [3H]noradrenaline and [14C]5-hydroxytryptamine in slices
 and crude synaptosome preparations of the midbrainhypothalamus region of the rat brain. Acta Pharmacol
 Toxicol 36: 382-394, 1975.
- 12. Buczko W, De Gaetano G and Garattini S, Effect of some anorectic agents on the uptake and release of 5-hydroxytryptamine by blood platelets of rat. *J Pharm Pharmacol* 27: 366-368, 1975.

- 13. Heikkila RE, Cabbat FS and Mytilineou C, Studies on the capacity of mazindol and dita to act as uptake inhibitors or releasing agents for [3H]biogenic amines in rat brain tissue slices. Eur J Pharmacol 45: 329-333, 1977.
- Heikkila RE and Manzino L, Behavioral properties of GBR12909, GBR13069 and GBR13098: specific inhibitors of dopamine uptake. Eur J Pharmacol 103: 241-248, 1984.
- Hyttel J, Citalopram—pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog Neuropsychopharmacol Biol Psychiatry 6: 277-295, 1982.
- Johnson AM, An overview of the animal pharmacology of paroxetine. Acta Psychiatr Scand 80 (Suppl 350): 14-20, 1989.
- Sterling GH, Doukas PH, Ricciardi FJ, Biedrzycka DW and O'Neill JJ, Inhibition of high affinity choline uptake and acetylcholine synthesis by quinuclidyl and hemicholinium derivatives. J Neurochem 46: 1170– 1175, 1986.
- Wielosz M, Salmona M, De Gaetano G and Garattini S, Uptake of [14C]5-hydroxytryptamine by human and rat platelets and its pharmacological inhibition. Naunyn Schmiedebergs Arch Pharmacol 296: 59-65, 1976.

Biochemical Pharmacology, Vol. 43, No. 8, pp. 1868-1871, 1992. Printed in Great Britain.

0006-2952/92 \$5.00 + 0.00 © 1992. Pergamon Press Ltd

Cytochrome P450-dependent mixed-function oxidase and glutathione S-transferase activities in spontaneous obesity-diabetes

(Received 10 January 1992; accepted 7 February 1992)

Abstract—The effect of non-insulin-dependent diabetes on the hepatic microsomal cytochrome P450-dependent mixed-function oxidase system and on cytosolic glutathione S-transferase activity was determined using the spontaneously obese-diabetic (ob/ob) mouse model. The activities of the xenobiotic-metabolizing cytochrome P450 proteins were monitored by the use of chemical probes. Non-insulin-dependent diabetes did not influence the hepatic metabolism of substrates associated with the P450 I, IIB, IIE, III and IV families of cytochromes. In contrast, cytosolic glutathione S-transferase activity was markedly reduced and glutathione levels were significantly lowered. These findings raise the possibility that patients suffering from this disease may be more susceptible to chemicals that rely on glutathione conjugation for their deactivation.

The cytochrome P450-dependent monooxygenases are probably the most important oxidase system, being responsible for the oxidation of endogenous substrates such as fatty acids, steroids, eicosanoids and vitamins, and also for the deactivation and detoxication of xenobiotics that gain entry into the living organism. It achieves this broad specificity by existing as a number of structurally distinct families of proteins, each with characteristic substrate specificity [1]. Certain families, such as the P450 I and to a lesser extent the P450 IIE, have the propensity to metabolize chemicals at positions, the oxidation of which results in the formation of reactive electrophilic species that interact with DNA and other important molecules giving rise to toxicity/carcinogenicity [2]. Clearly any change in the levels and/or composition of cytochrome P450 proteins will have a consequence for the way a living organism deals with a chemical and whether toxicity will ensue

In the early 60s [3] it was demonstrated that chemically induced type I, insulin-dependent diabetes modified the ability of hepatic preparations to metabolize a number of drugs and this was substantiated and extended by many other workers, employing different model substrates [4]. More recently it was established that the mechanism involved was a profound effect of the disease on hepatic cytochrome P450 proteins that participate in the metabolism of both endogenous and exogenous substrates [5-8]. The outcome of the alterations in cytochrome P450 composition and levels was that the diabetic animal was more susceptible to the toxicity of chemicals such as carbon tetrachloride and other chemical toxins [9] and, moreover, hepatic preparations from diabetic animals were significantly more effective in converting various promutagens, including nitrosamines and aromatic and heterocyclic amines, to mutagenic species in the Ames mutagenicity assay [5, 10, 11]. The present study was undertaken to investigate

whether non-insulin-dependent diabetes causes similar effects in hepatic cytochrome P450 activity and in glutathione conjugation. The studies were conducted in the spontaneously obese-diabetic (ob/ob) mice, which exhibit many features reminiscent of human non-insulindependent diabetes.

Materials and Methods

Pentoxyresorufin, ethoxyresorufin and resorufin (Molecular Probes, Eugene, OR, U.S.A.), ethylmorphine (May and Baker, Dagenham, U.K.), 4-nitrocatechol (BDH Chemicals, Poole, U.K.), p-nitropherol, lauric acid, 1, chloro-2,4-dinitrobenzene, cytochrome c and all cofactors (Sigma Chemical Co., Poole, U.K.) were all purchased.

Six male spontaneously hyperglycaemic obese (ob/ob) mice and six normal lean littermates, all 16 weeks of age, were obtained from the colony maintained at Aston University. Following death by cervical dislocation, the livers were immediately excised, the gall bladders removed. and microsomal and cytosolic fractions were prepared as described previously [12]. The following determinations were carried out on the microsomal fraction: ethoxyresorufin O-deethylase [13], pentoxyresorufin O-depentylase [14], ethylmorphine N-demethylase [15], p-nitrophenol oxidase [16], NADPH-cytochrome c reductase [17], cytochrome b_5 and total cytochrome P450 levels [18]. Lauric acid hydroxylase was determined by a TLC method [19] and represents the combined formation of $12(\omega)$ - and $11(\omega-1)$ hydroxylauric acid metabolites. On the cytosolic fraction: total glutathione levels [20], glutathione S-transferase, using 1,chloro-2,4-dinitrobenzene as the acceptor substrate [21], and glutathione reductase [22] were determined.

Protein was determined on both fractions [23] using bovine serum albumin as standard. In the plasma, glucose [24] and 3-hydroxybutyrate and acetoacetate [25] concentrations were determined. Statistical evaluation was carried out using the unpaired Student's t-test.

Results

The obese-diabetic (ob/ob) mice exhibited hyperglycaemia, plasma glucose levels being double those of the lean controls (Table 1). The plasma ketone levels, measured as the sum of acetoacetate and hydroxybutyrate, did not differ between the two animal groups. Cytochrome b_5 and total cytochrome P450 levels, as well as the NADPHdependent reduction of cytochrome c in obese mice, were not significantly different from those in the lean animals (Table 2). Mixed-function oxidase activity, determined using five model substrates, was similar in the two animal groups (Table 2). However, glutathione S-transferase activity was markedly lower in the obese-diabetic mice when compared to the lean animals (Table 3). Cytosolic glutathione levels were also lower in the obese mice but the difference was less pronounced. There was no significant difference in glutathione reductase activity between the two animal groups (Table 3).

Discussion

Non-insulin-dependent diabetes is a milder, but a much more prevalent form of the disease that tends to afflict the old and the obese, and is effectively treated by oral medication and manipulation of the diet. In the present study, mixed-function oxidase activity was determined in the obese-diabetic mice and their normal littermates using

Table 1. Plasma ketone and glucose concentrations in lean and obese-diabetic (ob/ob)

Parameter	Lean	Obese-diabetic
Glucose (mM) Acetoacetate + 3-hydrohybutyrate (mM)	5.6 ± 0.2 0.40 ± 0.01	$11.2 \pm 1.4^{*}$ 0.38 ± 0.10

Results are presented as means ± SEM for six animals.

* P < 0.05.

Table 2. Hepatic microsomal parameters and mixed-function oxidases in lean and obese-diabetic (ob/ob) mice

Parameter	Lean	Obese-diabetic
Ethoxyresorufin O-deethylase		
(pmol/min/mg protein)	9.9 ± 2.1	8.6 ± 2.8
Pentoxyresorufin O-depentylase		
(pmol/min/mg protein)	0.4 ± 0.2	0.5 ± 0.2
p-Nitrophenol oxidase		
(nmol/min/mg protein)	0.80 ± 0.07	0.91 ± 0.09
Ethylmorphine N-demethylase		
(nmol/min/mg protein)	14.0 ± 1.1	15.1 ± 2.4
Lauric acid hydroxylase		
(nmol/min/mg protein)	1.8 ± 0.7	2.3 ± 0.6
NADPH-cytochrome c reductase		
(nmol/min/mg protein)	5.5 ± 0.7	7.1 ± 2.0
Cytochrome P450		
(nmol/mg protein)	0.21 ± 0.05	0.19 ± 0.01
Cytochrome b ₅		
(nmol/mg protein)	0.45 ± 0.10	0.51 ± 0.10
Protein		
(mg/g liver)	26.0 ± 0.9	28.1 ± 1.2

Results are presented as means \pm SEM for six animals.

Table 3. Hepatic cytosolic glutathione conjugation in lean and obese-diabetic (ob/ob) mice

Parameter	Lean	Obese-diabetic
Glutathione S-transferase		
(µmol/min/mg protein)	1.48 ± 0.06	$0.34 \pm 0.06 \dagger$
Glutathione reductase		
(nmol/min/mg protein)	64.4 ± 2.4	78.2 ± 7.2
Total glutathione (mM)	7.8 ± 0.5	4.8 ± 0.7 *

Results are presented as means ± SEM for six animals.

P < 0.01; † P < 0.001.

five substrates that serve as chemical probes for specific cytochrome P450 families: ethoxyresorufin O-deethylase for P450 I [26], pentoxyresorufin O-depentylase for P450 IIB [14], p-nitrophenol oxidase for P450 IIE [27], lauric acid hydroxylase for P450 IV [28] and ethylmorphine Ndemethylase for P450 III [29]. None of these activities was influenced by non-insulin-dependent diabetes in the model examined which is in marked contrast to the effect observed in insulin-dependent diabetes where all the above activities were induced [5, 7, 8]. Similarly, using less specific substrates, Rouer and Leroux [30] did not observe significant differences between the ob/ob mice and their lean controls. The insulin-dependent diabetes-induced changes in hepatic P450 activity were ascribed to two physiological changes that accompany this condition, namely hyperketonaemia and the lower circulating levels of growth hormone, the consequence of impaired secretion [7, 8, 31, 32]. The present model of non-insulin-dependent diabetes exhibits normal plasma ketone concentrations and plasma growth hormone levels are normal or slightly reduced [33, 34]. The normal plasma ketone and growth hormone levels account for the lack of effect of non-insulindependent diabetes on the mixed-function oxidase system.

Reactive intermediates produced through metabolism may be detoxicated by phase II reactions, the most prominent being the conjugation with the tripeptide glutathione, the reaction being catalysed by the glutathione S-transferases. In chemically induced insulin-dependent diabetes rat hepatic glutathione S-transferase activity diminished [9] although other workers, whose studies were conducted in mice, reported increases in streptozotocintreated mice, which, however, could be attributed to the diabetogen rather than the diabetic state [35]. In the present study, glutathione S-transferase activity was reduced markedly in obese-diabetic (ob/ob) mice, being 25% of that seen in the lean animals. The mechanism through which glutathione S-transferase activity is inhibited in both diabetes syndromes is not clear, but the fact that hyperglycaemia is a common characteristic of both conditions, indicates that it may, at least partly, mediate these changes; however, other mechanisms may be involved and may not be necessarily common to the two conditions. Glutathione levels were also lower in the obese-diabetic mice when compared to the lean controls. Chemically induced insulin-dependent diabetes has also been associated with changes in glutathione levels, both increases and decreases [36, 37]. Finally, non-insulin-dependent diabetes did not influence glutathione reductase activity which ensures that glutathione is maintained in the reduced form. The decreased capacity to conjugate with glutathione observed in this model of non-insulin-dependent diabetes raises the possibility that patients suffering from this disease may be particularly susceptible to the toxicity of chemicals. Moreover, the glutathione levels being low, they can be depleted with lower doses of a given chemical toxin, further exacerbating the toxic response.

In conclusion, the present study demonstrates that noninsulin-dependent diabetes, as manifested in obese-diabetic (ob/ob) mice, decreases glutathione conjugation capacity but, in contrast to insulin-dependent diabetes, it does not modulate the hepatic microsomal cytochrome P450dependent mixed-function oxidase system.

Acknowledgements—The authors wish to thank the Science and Engineering Research Council, Nordisk UK and Department of Health and Social Services (N.I.) and University of Ulster Selectivity Committee for financial support.

*Molecular Toxicology Research Group Division of Toxicology School of Biological Sciences University of Surrey Guildford, Surrey GU2 5XH †Biomedical Sciences Research Centre and Department of Biological and Biomedical Sciences University of Ulster Coleraine BT52 1SA Northern Ireland and ‡Department of

Molecular Sciences

Birmingham B4 7ET, U.K.

Aston University

CHRISTOPHER R. BARNETT*† REBECCA A. ABBOTT*

CLIFFORD J. BAILEY‡ PETER R. FLATT COSTAS IOANNIDES*§

REFERENCES

- 1. Gonzalez FJ, Molecular genetics of the P-450 superfamily. *Pharmacol Ther* 45: 1–38, 1990. 2. Ioannides C and Parke DV, The cytochrome P450I
- gene family of microsomal hemoproteins and their role in the metabolic activation of chemicals. Drug Metab Rev 22: 1-85, 1990.
- 3. Dixon RL, Hart LG and Fouts JR, The metabolism of drugs by liver microsomes from alloxan-diabetic rats. J Pharmacol Exp Ther 133: 7-11, 1961.
- 4. Ioannides C, Metabolism and toxicity of chemicals in diabetes. Acta Pharm Jugosl 40: 423-439, 1990.
- 5. Ioannides C, Bass SL, Ayrton AD, Trinick J, Walker R and Flatt PR, Streptozotocin-induced diabetes modulates the metabolic activation of chemical carcinogens. Chem Biol Interact 68: 189-202, 1988.
- 6. Favreau LV and Schenkman JB, Composition changes in hepatic microsomal cytochrome P-450 during onset of streptozotocin-induced diabetes and during insulin treatment. Diabetes 37: 577-584, 1988.
 7. Barnett CR, Gibson GG, Wolf CR, Flatt PR and
- Ioannides C, Induction of P450III and P450IV family

[§] Corresponding author.

- proteins in streptozotocin-induced diabetes. *Biochem J* 268: 765-769, 1990.
- Barnett CR, Flatt PR and Ioannides C, Induction of hepatic microsomal P450I and P450IIB proteins by hyperketonaemia. Biochem Pharmacol 40: 393-397, 1990.
- Watkins JB III, Sanders RA and Beck LV, The effects of long-term streptozotocin-induced diabetes on the hepatoxicity of bromobenzene and carbon tetrachloride and hepatic biotransformation in rats. *Toxicol Appl Pharmacol* 93: 329-338, 1988.
- Yamazoe Y, Abu-Zeid M, Yamauchi K, Murayama N, Shimada M and Kato R, Enhancement by alloxaninduced diabetes of the rate of metabolic activation of three pyrolysate carcinogens via increases in the P-488-H content of rat liver. *Biochem Pharmacol* 37: 2503– 2506, 1988.
- Flatt PR, Bass SL, Ayrton AD, Trinick J and Ioannides C, Metabolic activation of chemical carcinogens by hepatic preparations from streptozotocin-treated rats. *Diabetologia* 32: 135-139, 1989.
- Ioannides C and Parke DV, Mechanism of induction of hepatic microsomal drug metabolising enzymes by a series of barbiturates. J Pharm Pharmacol 27: 739– 746, 1975.
- 13. Burke MD and Mayer RT, Ethoxyresorufin: direct fluorometric assay of microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. *Drug Metab Dispos* 2: 583-588, 1974.
- Lubet RA, Mayer RT, Cameron JW, Nims RW, Burke MD, Wolff T and Guengerich FP, Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome(s) P-450 by phenobarbital and other xenobiotics in the rat. Arch Biochem Biophys 238: 43-48, 1985.
 Lu AYH, Kuntzman R, West S, Jacobson M and
- 15. Lu AYH, Kuntzman R, West S, Jacobson M and Conney AH, Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds and endogenous substrates. II. Role of the cytochrome P-450 and P-448 fractions in drug and steroid hydroxylations. J Biol Chem 247: 1727-1734, 1972.
- Reinke LA and Moyer MJ, p-Nitrophenol hydroxylation: a microsomal oxidation which is highly inducible by ethanol. Drug Metab Dispos 13: 548-552, 1985.
- Williams CH Jr and Kamin H, Microsomal triphosphopyridine cytochrome c reductase of liver. J Biol Chem 237: 587-595, 1962.
- 18. Omura T and Sato R, The carbon monoxide pigment of liver microsomes. I. Evidence for its haemoprotein nature. *J Biol Chem* 239: 2370-2378, 1964.
- Parker GL and Orton TC, Induction by oxyisobutyrates of hepatic and kidney microsomal cytochrome P-450 with specificity towards hydroxylation of fatty acids. In: Biochemistry, Biophysics and Regulation of Cytochrome P-450 (Eds. Gustafsson JA, Carlstedt-Duke J, Mode A and Raffer J), pp. 373-377. Elsevier/North-Holland, Amsterdam, 1980.
- Akerboom TPM and Sies H, Assay of glutathione, glutathione disulphide and glutathione mixed disulphides in biological samples. Methods Enzymol 77: 373-382, 1981.

- Habig WH, Pabst MJ and Jakoby WB, Glutathione Stransferase. The first enzymic step in mercapturic acid formation. J Biol Chem 249: 7130-7139, 1974.
- Carlberg I and Mannervik B, Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250: 5475-5480, 1975.
- Lowry OH, Rosebrough NJ, Farr AL and Randall RJ, Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275, 1951.
- 24. Stevens J, Determination of glucose by an automatic analyser. J Clin Chim Acta 32: 199-201, 1971.
- McGarry JD, Guest MJ and Foster DW, Ketone body metabolism in the ketosis of starvation and alloxan diabetes. J Biol Chem 245: 4382-4390, 1970.
- Guengerich FP, Dannan GA, Wright ST, Martin MV and Kaminsky LS, Purification and characterization of cytochrome P-450s. Xenobiotica 12: 701-716, 1982.
- Koop DR, Leathem CL and Tierney DJ, The utility
 of p-nitrophenol hydroxylation in P450 IIE1 analysis.
 Drug Metab Rev 20: 541-551, 1989.
- Tamburini PP, Masson HA, Bains SK, Makowski RJ, Morris BA and Gibson GG, Multiple forms of hepatic cytochrome P-450. Purification characterisation and comparison of a novel clofibrate-induced isozyme with other other major forms of cytochrome P-450. Eur J Biochem 139: 235-246, 1984.
- Wrighton SA, Maurel P, Schultz EG, Watkins PB, Young B and Guzelian PS, Identification of the cytochrome P-450-induced by macrolide antibiotics in the rat liver as the glucocorticoid responsive cytochrome P-450p. Biochemistry 24: 2171-2178, 1985.
- Rouer E and Leroux J-P, Liver microsomal cytochrome P-450 and related monooxygenase activities in genetically hyperglycaemic (ob/ob and db/db) and lean streptozotocin mice. *Biochem Pharmacol* 29: 1959– 1962, 1980.
- Bellward GD, Chang T, Rodrigues B, McNeill JH, Maines S, Ryan DE, Levin W and Thomas PE, Hepatic cytochrome P450j induction in the spontaneously diabetic BB rat. Mol Pharmacol 33: 140-143, 1988.
- Barnett CR, Flatt PR and Ioannides C, Role of ketone bodies in the diabetes-induced changes in hepatic mixed-function oxidase activities. *Biochim Biophys* Acta 967: 250-254, 1988.
- Roos P, Martin MJ, Westman-Naeser S and Hellestrom C, Immunoreactive growth hormone levels in mice with the obese hyperglycemic syndrome (genotype ob/ ob). Horm Metab Res 6: 125-128, 1974.
- Sinha YN, Salocks CB and Vanderlaan WP, Prolactin and growth hormone secretion in chemically induced and genetically obese mice. *Endocrinology* 97: 1386– 1393, 1975.
- 35. Agius C and Gidari AS, Effect of streptozotocin on the glutathione S-transferase of mouse liver cytosol. Biochem Pharmacol 34: 811-819, 1985.
- Hassing JM, Rosenberg H and Stohs SJ, Acetaminophen-induced glutathione depletion in diabetic rats. Res Commun Chem Pathol Pharmacol 25: 3-11, 1979.
- Price VP and Jollow DJ, Increased resistance of diabetic rats to acetaminophen-induced hepatotoxicity. J Pharmacol Exp Ther 220: 504-513, 1982.